AISCT®

("ASSIST")

Technical Insights on AI-Enhanced Field Screening in Excavation and Assessment Programs

PRESENTATION OUTLINE

What is the challenge with Field Screening?

Project Background

Application of AISCT in Assessment Program

Application of AISCT in Remediation Program

AISCT – a Consultant's Perspective

Petroleum Hydrocarbons

A Photoionization Detector (PID) or Flame Ionization Detector (FID) is a type of gas detector used to measure volatile organic compounds (VOCs) and some inorganic compounds in the air.

EASE OF USE = EASE OF MISUSE

Limitations:

- Sensitive to Humidity/Soil Type
- Interferences
- Maintenance: The UV lamp and sensor can become contaminated quickly, requiring regular cleaning and calibration
- Limited Selectivity: may not distinguish between VOCs

Prone to Error:

- Preparation
- Calibration/Over Limit
- Collection Temperature
- Contaminant User Etc.

Challenges of Measuring
Chloride

- EC and other indicator parameters biased by other ions and salt makeup.
- Few technologies for ion specific analysis.
- 03 Lacking accuracy and precision
- 04 Importance of consistency and reliability among users.
- 05 Low standardization of methodology.

AISCT Setup and Operations

ambipar®

PROJECT BACKGROUND

- Gas well drilled in late 1950s and it was abandoned in 1990s
- Sweet gas production started in 1970s
- Sour gas production started in 1990
 - Regulated under EPEA Approval
- Gas plant decommissioned in 2019

PROJECT BACKGROUND

- Soil and groundwater data available since early 2000s
- 2023 RAP for methanol, salinity and PHC impacts
 - Approved by AER
- Public bid to execute
 Phase 1 of the
 remediation project

PROJECT BACKGROUND

Phase 1:

PHC Impacts – Area of 2,650 m² to 2.5 m depth

Methanol Impacts — Area of 150 m² to 2.5 m depth

Phase 2:

Salinity Impacts – Area of 1,075 m²

ASSESSMENT PHASE

- Issues identified in data review:
 - Current guidelines not used for comparison purposes in analytical tables
- Lack of vertical delineation
- Lack of lateral delineation
- Insufficient characterization

ambipar®

ASSESSMENT PHASE

- Test Pit Investigation:
 - to collect soil data to address the identified data gaps
 - to trial AISCT technology
- 10 test pits excavated
- Soil samples were screened using OVA and AISCT at 1 m intervals
 - worst case sample submitted for laboratory analysis by Ambipar
 - all samples were screened using AISCT for comparison against OVA and lab data

ASSESSMENT PHASE

- Field screening, laboratory and AISCT data comparison (test pits):
 - 54% of samples would have been excavated unnecessarily (false positive @ >100 ppm OVA screening criteria)
 - 11% of samples required remediation but would have been missed by OVA (<100 ppm)
- Depth of impacts extended (3.5-5 m vs.
 2.5 m specified in the RAP)
- Chloride impacts identified outside work scope area in test pit "A"

ASSESSMENT PHASE – Portion of Test Pit Data

AISCT PHC – 95% Correct Prediction

Sample log		GC - Laboratory (mg/kg)		AISCT (20%) (mg/kg)			
Sample ID	OVA (ppm)	F1	F2	F3	F1	F2	F3
Test Pit A 1.0m	20				M.C.	M.C. (within buffer)	M.C.
Test Pit A 2.0m	50				M.C.	M.C.	M.C.
Test Pit A 3.0m	110	<10	<10	12	M.C.	M.C.	M.C.
Test Pit A 4.0m	10				M.C.	M.C.	M.C.
Test Pit A 5.0m	5				M.C.	M.C.	M.C.
Test Pit B 1.0m	10				M.C.	M.C.	M.C.
Test Pit B 2.0m	5				M.C.	M.C.	M.C.
Test Pit B 3.0m	10				M.C.	M.C.	M.C.
Tost Pit B 4.0m	15	<10	<10	19	M.C.	M.C.	M.C.
Test Pit B 5.0m	10				M.C.	165.2 (within buffer)	M.C.
Test Pit C 1.0m	55				M.C.	454.6	M.C.
Test Pit C 2.0m	200	160.0	482.0	42.0	M.C.	670.8	M.C.
Test Pit C 3.0m	65				M.C.	M.C.	M.C.
Test Pit C 4.0m	30				M.C.	M.C.	M.C.
Test Pit C 5.0m	0				M.C.	M.C.	M.C.
Test Pit D 1.0m	2100				M.C.	697.2	M.C.
Test Pit D 2.0m	3100	700.0	175.0	159.0	M.C.	154.7 (within buffer)	M.C.
Test Pit D 3.0m	800				M.C.	833.0	M.C.
Test Pit D 4.0m	320				M.C.	162.4 (within buffer)	M.C.
Test Pit D 5.0m	15				M.C.	M.C.	M.C.
Test Pit E 1.0m	5	<10	<10	13.0	M.C.	M.C.	M.C.
Test Pit E 2.0m	5				M.C.	M.C.	M.C.
Test Pit E 3.0m	0				M.C.	M.C.	M.C.
Test Pit E 4.0m	0				M.C.	M.C.	M.C.
Test Pit E 5.0m	Q				M.C.	M.C.	M.C.
	200				M.C.	M.C.	M.C.
Test Pit F 2.0m	<u> </u>				M.C.	673.6	M.C.
Test Pit F 3.0m	460	640.0	90.0	19.0	M.C.	178.5 (within buffer)	M.C.
Test Pit F 4.0m	10				M.C.	M.C.	M.C.
Test Pit F 5.0m	0				M.C.	M.C.	M.C.
Tost Pit G 1.0m	20				M.C.	M.C.	M.C.
Test Pit G 2.0m	125				M.C.	M.C.	M.C.
Tost Pit G 3.0m	25				M.C.	M.C.	M.C.
Test Pit G 4.0m	640	80.0	11.0	17.0	M.C.	M.C.	M.C.
Test Pit G 5.0m	10				M.C.	M.C. (within buffer)	M.C.

Sal – AISCT >90% Correct Prediction

Sample log	Laboratory Ambipar (mg/kg)	AISCT (mg/kg)
Sample ID	Cl	Cl
Test Pit A 1.0m		N.D.
Test Pit A 2.0m		128.1
Test Pit A 3.0m	3,510	4502.9
Test Pit A 4.0m		Over Max.
Test Pit A 5.0m		2271.2
Test Pit C 1.0m		1250.5
Test Pit C 2.0m	1,020	1079.6
Test Pit C 3.0m		2220.8
Test Pit C 4.0m		1999.5
Test Pit C 5.0m		2325.1
Test Pit E 1.0m	15	70.6
Test Pit E 2.0m		N.D.
Test Pit E 3.0m		N.D.
Test Pit E 4.0m		N.D.
Test Pit E 5.0m		51.6
Test Pit G 1.0m		N.D.
Test Pit G 2.0m		169.5
Test Pit G 3.0m		844.6
Test Pit G 4.0m	1,040	1002.3
Test Pit G 5.0m		1264.3
Test Pit J 1.0m	7	99.9
Test Pit J 2.0m		71.2
Test Pit J 3.0m		64.5
Test Pit J 4.0m		63.7
Test Pit J 5.0m		N.D.

REMEDIATION PHASE

Remediation Targets:

- Tier 2 for PHC Parameters FAL and DUA/PWA pathway exclusion
- Tier 2 chloride guidelines calculated with subsoil salinity tool (SST) for 3 subareas:
 - Subarea 1
 - Depth specific guidelines (1.5, 2.0, 2.5, 3.0 m)
 - Subarea 2
 - Subarea 3

Program challenge – how to effectively field screen to meet the site-specific guidelines?

ambipar®

REMEDIATION PHASE

198H-16
198H-24
08-08
08-08
09-H22
HYDROCARBON
DIG AREA
(~2,660m²)
16-B1
19-B123
19-B1

Strategic excavation in small lifts to remove contamination

AISCT results available ~20 minutes

Submitted lab samples when confident to be 'clean'

AISCT used to identify boundary/delineation prior to excavation

REMEDIATION PHASE – HYDROCARBON RESULTS

Parameter	Value
# Samples Analyzed	215
# of Exceedances Predicted	31
# of Laboratory Samples	24
# Correctly predicted	24
Correct Prediction	100%

		GC - Laboratory (mg/kg)			AISCT (20%) (mg/kg)		
Sample ID	F1	F2	F3	F1	F2	F3	
WEST WALL 2 2.0	176.0	<10	22.0	M.C.	M.C.	M.C.	
WEST WALL 3 2.0	18.0	<10	27.0	M.C.	M.C.	M.C.	
WEST WALL 4 3.0	<10	<10	20.0	M.C.	M.C.	M.C.	
NORTH WALL 2 3.0	<10	<10	21.0	M.C.	M.C.	M.C.	
NORTH WALL 3 3.0	<10	<10	31.0	M.C.	M.C.	M.C.	
NORTH WALL 4 3.0	<10	<10	19.0	M.C.	M.C.	M.C.	
NORTH WALL 5 2.0	<10	<10	11	M.C.	M.C.	M.C.	
1-1 BASE 2 3.5	<10	<10	13.0	M.C.	M.C.	M.C.	
1-1 BASE 1 4.0	<10	20	99	M.C.	M.C.	M.C.	
2-1 BASE 2 4.0	<10	<10	38	N.D.	M.C.	M.C.	
2-1 BASE 3 4.0	<10	14	40	N.D.	M.C.	M.C.	
2-2 BASE 2 4.0	<10	13	56	M.C.	M.C.	M.C.	
L-1 BASE 4 4.0	<10	<10	78	N.D.	M.C.	M.C.	
2-1 BASE 5 4.0	<10	14	55	M.C.	M.C.	M.C.	
2-2 BASE 14.0	<10	<10	46	M.C.	M.C.	M.C.	
2-2 BASE 3 4.0	<10	15	48	M.C.	M.C.	M.C.	
2-2 BASE 4 4.0	<10	<10	43	M.C.	M.C.	M.C.	
WEST WALL 1 2.0	62	30	53	M.C.	M.C.	M.C.	
WEST WALL 2 2.0	132	32	49	M.C.	M.C.	M.C.	
WEST WALL 3 2.0	52	21	43	M.C.	M.C.	M.C.	
WEST WALL 4 2.0	<10	<10	36	M.C.	M.C.	M.C.	
METH WEST WALL 0.5	<10	<10	71	M.C.	M.C.	M.C.	
5-1 BASE 1 3.5	<10	<10	39	M.C.	M.C.	M.C.	
5-2 BASE 2 3	<10	<10	31	M.C.	M.C.	M.C.	

REMEDIATION PHASE – CHLORIDE RESULTS

Parameter	Value
# Samples Analyzed	228
# of Exceedances Predicted	42
# of Laboratory Samples	28
# Correctly predicted	27
Correct Prediction	96.4 %

REMEDIATION PHASE – OUTCOMES

Parameter	Result	Implication
Tonnage	Reduced 3,000 Tonnes to landfill by elimination of false positives	\$156,000
On-site Liability	560 Tonnes evaluated as clean but was impacted and removed	\$30,000
Time	Reduced project duration by at least 3 days	14% less project time
Safety	Eliminated >60 loads transported on highways Eliminated rush trips to laboratory Eliminated 3 days of manhours and equipment on-site	>300 Driving Hours >150 On-site Hours
Manifested Liability	2,440 Tonnes of manifested soil not in a landfill	Long term?
Laboratory	Reduced sample requirements by >50% and reduced TAT from 24 hr rush to 3 day	>\$3,000
Supplemental Assessments	Had AISCT been used prior fewer assessments would have been needed, eliminating the test pitting program and others.	>\$12,000

AISCT – FROM CONSULTANT'S PERSPECTIVE

- AISCT provided real-time PHC and chloride data:
 - Delivered on promised accuracy
 - Provided characterization data which would have been missed by traditional field screening methods
 - Reduced volume of soil requiring offsite disposal/clean backfill
 - Eliminated bias from some traditional decision making
 - Reduced manpower

AISCT – FROM CONSULTANT'S PERSPECTIVE

AISCT Results:

- Prediction tool accurately predicts 'clean' versus 'dirty'
- Cannot be treated as laboratory data; not used for 'closure' alone
 - BUT.... it provides certainty about which samples to take, when to take them and what to expect when you get the results
 - Efficiently streamlines the decision-making process when time means cost

AISCT – FROM CONSULTANT'S PERSPECTIVE

• Cost:

- Cannot be compared to traditional field screening methods
- Reduce project timelines
- Reduce volume of soil requiring landfilling/clean backfill
- Reduce field personnel
- Environmental costs
 - Less equipment/trucking/tipping/fuel consumption
 - Less KMs travelled, less risk of incidents
- Eliminate/reduce supplementary assessments
 - Faster/cheaper site closure

AISCT - FROM CONSULTANT'S PERSPECTIVE

Potential Uses of AISCT:

- Assessment Programs
 - Fewer supplemental assessments
 - Area Base Closure programs
- Remediation Programs
 - Planning stages to better characterize or delineate impacts prior to remediation; improve scopes and RAPs/CAPs, reduce magnitude of scope change or potential cost overrun at time of remediation
 - During remediation to selectively excavate contaminated soil to reduce soil volume

Monika Pietrowicz, P.Eng. (AB, SK, MB)

+1403-796-4277

m on ika.p ie trowicz@am b ip ar.com

www.ambipar.com

Jevins Waddell, P.Tech. (Eng)

+1 403-932-5014

jwaddell@triuminc.com

www.triuminc.com

